Given:
[tex](-3,-5)\text{ and (2,-11) are the given points.}[/tex][tex]\begin{gathered} \text{Slope(m)}=\frac{y_2-y_1}{x_2-x_1} \\ \text{Slope(m)}=\frac{-11+5}{2+3} \\ \text{Slope(m)}=-\frac{6}{5} \end{gathered}[/tex]Equation of straight line with the point(2,-11) and slope is
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y+11=-\frac{6}{5}(x-2) \\ 5(y+11)=-6(x-2) \\ 5y+55=-6x+12 \\ 6x+5y+55-12=0 \\ 6x+5y+43=0 \end{gathered}[/tex]Equation in slope intercept form
[tex]y=-\frac{6}{5}x-\frac{43}{5}[/tex]