Respuesta :

To determine the equation of the line, given that you know the slope and the coordinates of one point, you can use the point-slope form, which is:

[tex]y-y_1=m(x-x_1)[/tex]

Where

m is the slope of the line

(x₁,y₁) are the coordinates of the point

Replace the values in the equation

m=-1/8

(x₁,y₁)= (4,4)

[tex]y-4=-\frac{1}{8}(x-4)[/tex]

Next, write the equation in slope-intercept form:

-Distribute the multiplication in the parentheses term

[tex]\begin{gathered} y-4=-\frac{1}{8}\cdot x-(-\frac{1}{8})\cdot4 \\ y-4=-\frac{1}{8}x-(-\frac{1}{2}) \\ y-4=-\frac{1}{8}x+\frac{1}{2} \end{gathered}[/tex]

-Add 4 to both sides of the expression

[tex]\begin{gathered} y-4+4=-\frac{1}{8}x+\frac{1}{2}+4 \\ y=-\frac{1}{8}x+\frac{9}{2} \end{gathered}[/tex]

So, the equation of the line with slope -1/8 that passes through the point (4,4) is

[tex]y=-\frac{1}{8}x+\frac{9}{2}[/tex]