Identify the coordinates of Q and Q'.
[tex]Q(-4,-2);Q^{\prime}(-10,-5)[/tex]
Compare the two sets of coordinates. Divide the coordinate of the new figure by the coordinate of the original figure. Thus, we have the following.
[tex]\begin{gathered} x-coordinates\colon\frac{x^{\prime}}{x}=\frac{-10}{-4}=\frac{5}{2} \\ y-coordinates\colon\frac{y^{\prime}}{y}=\frac{-5}{-2}=\frac{5}{2} \end{gathered}[/tex]
This means the coordinates of the bigger polygon can be obtained by getting the 5/2 of the original coordinates. Thus, the new coordinates must be
[tex](x^{\prime},y^{\prime})=\mleft(\frac{5}{2}x,\frac{5}{2}y\mright)[/tex]