Respuesta :

Explanation

We are given the following:

[tex]\begin{gathered} P=\text{ \$}140 \\ r=6\%=0.06 \\ t=15 \\ n=12 \end{gathered}[/tex]

We are required to determine the amount.

This is achieved thus:

We are given the formula below:

[tex]A(t)=P(1+\frac{r}{n})^{nt}[/tex]

Therefore, we have:

[tex]\begin{gathered} A(t)=140(1+\frac{0.06}{12})^{12\cdot15} \\ A(t)=140(1+\frac{0.06}{12})^{180} \\ A(t)=140(1.005)^{180} \\ A(t)=343.57309 \\ A(t)\approx\text{ \$}343.57 \end{gathered}[/tex]

Hence, the answer is:

[tex]A(t)\approx\text{ \$}343.57[/tex]