Respuesta :

Given:

There are given that the function:

[tex]f(x)=\frac{1}{(x+3)}-2[/tex]

Explanation:

The graph of the given function is shown below:

Now,

(1) Domain:

To find the domain of the given function, we need to find the value where the function is defined.

Then,

The domain of the given function is:

[tex]\text{Domain: (-}\infty,-3)\cup(-3,\infty)[/tex]

(2) Range:

To find the range of the given function, we need to find the set of values that correspond with the domain.

So,

The range of the given function is:

[tex](-\infty,-2)\cup(-2,\infty)[/tex]

(3) Increasing on:

[tex]\text{ increasing on: never increasing}[/tex]

(4) Decreasing on:

The value of decreasing on:

[tex](-\infty,-3),(-3,\infty)[/tex]

(5): All asymptote:

The value of asymptote are:

[tex]\begin{gathered} \text{vertical asymptote : x=-3} \\ \text{Horizontal asymptote : y=-2} \end{gathered}[/tex]

(6) All limit (4):

[tex]\begin{gathered} f(x)=\frac{1}{(x+3)}-2 \\ f(4)=\frac{1}{(4+3)}-2 \\ f(4)=\frac{1}{7}-2 \\ f(4)=\frac{-13}{7} \end{gathered}[/tex]

Hence, the all limit at 4 is -1.85.

Ver imagen KassidyV407779