A pole that is 3.1 m tall casts a shadow that is 1.1 m long. At the same time, a nearby building casts a shadow that is 37.25 m long. How tall is the building?Round your answer to the nearest meter.х5?

Respuesta :

Let's determine the height of the building using ratios and proportions.

[tex]\text{ }\frac{\text{ Height of Pole}}{\text{ Shadow length of Pole}}\text{ = }\frac{\text{ Height of Building}}{\text{ Shadow length of Building}}[/tex][tex]\text{ }\frac{\text{ 3.1}}{\text{ 1.1}}\text{ = }\frac{\text{ h}}{\text{ 37.25}}[/tex]

Where,

h = height of the building

We get,

[tex]\text{ }\frac{\text{ 3.1}}{\text{ 1.1}}\text{ = }\frac{\text{ h}}{\text{ 37.25}}[/tex][tex]\text{ 3.1 x 37.25 = h x 1.1}[/tex]

[tex]115.475=1.1h[/tex]

[tex]\frac{115.475}{1.1}=\frac{1.1h}{1.1}[/tex]

[tex]\begin{gathered} \text{ 104.97727272727 = h} \\ \text{ h = 104.97727272727} \end{gathered}[/tex]

[tex]\text{ h }\approx\text{ 105 m}[/tex]

Therefore, the height of the building is approximately 105 m.