Is the sequence (an)=(5/6,2/3,1/2,1/3,1/6,…) arithmetic, geometric, or neither? If it is arithmetic, identify the common difference, d. If it is geometric, identify thecommon ratio,r.

Is the sequence an5623121316 arithmetic geometric or neither If it is arithmetic identify the common difference d If it is geometric identify thecommon ratior class=

Respuesta :

Given:-

[tex]\frac{5}{6},\frac{2}{3},\frac{1}{2},\frac{1}{3},\frac{1}{6}[/tex]

To find the given sequence is arithmetic or geometric or neither.

If the given sequence is arithmetic, then it obeys the formula,

[tex]t_2-t_1=t_3-t_2=t_4-t_3[/tex]

So now we substitute the values. So we get,

[tex]\begin{gathered} \frac{2}{3}-\frac{5}{6}=\frac{1}{2}-\frac{2}{3} \\ \frac{4}{6}-\frac{5}{6}=\frac{3-4}{6} \\ -\frac{1}{6}-\frac{1}{6} \end{gathered}[/tex]

Now we do this for the next two terms,

[tex]\begin{gathered} \frac{1}{2}-\frac{2}{3}=\frac{1}{3}-\frac{1}{2} \\ \frac{3-4}{6}=\frac{2-3}{6} \\ -\frac{1}{6}=-\frac{1}{6} \end{gathered}[/tex]

Now we do this for the next two terms,

[tex]\begin{gathered} \frac{1}{3}-\frac{1}{2}=\frac{1}{6}-\frac{1}{3} \\ \frac{2-3}{6}=\frac{1-2}{6} \\ -\frac{1}{6}=-\frac{1}{6} \end{gathered}[/tex]

So the given sequence is ARITHMETIC SEQUENCE.

So the common difference is,

[tex]d=-\frac{1}{6}[/tex]