Respuesta :

Given the function f(x), the slope is evaluated by differentiating the f(x) function with respect to x.

Thus,

[tex]\text{slope = }\frac{df(x)}{dx}\text{ = f'(x)}[/tex]

Given a function f(x) as

[tex]f(x)\text{ = }\frac{4}{\sqrt[]{x+5}}[/tex]

Step 1:

Differentiate the f(x) function with respect to x.

[tex]\begin{gathered} f(x)\text{ = }\frac{4}{\sqrt[]{x+5}}\text{ can also be written as} \\ f(x)\text{ = }4(x+5)^{-\frac{1}{2}} \end{gathered}[/tex]

differentiating the f(x) function, we have

[tex]\begin{gathered} f(x)\text{ = }4(x+5)^{-\frac{1}{2}} \\ \frac{df(x)}{dx}\text{ = -}\frac{1}{2}\times4(x+5)^{-\frac{1}{2}-1} \\ \Rightarrow slope=f^{\prime}(x)=-2(x+5)^{-\frac{3}{2}} \end{gathered}[/tex]

Step 2:

Evaluate the slope at the point (-1, 1).

The slope at the point (-1, 1) is evaluated by substituting the values of x and y into the f'(x) function.

Thus,

[tex]\begin{gathered} x\text{ = -1, y = 1} \\ \text{substitute the values of x and y into f'(x)} \\ f^{\prime}(x)=-2(x+5)^{-\frac{3}{2}} \\ =-2(-1+5)^{-\frac{3}{2}} \\ =-2(4)^{-\frac{3}{2}} \\ =-2\times\frac{1}{8}^{} \\ =-\frac{1}{4} \end{gathered}[/tex]

Hence, the slope of the function at the point (-1, 1) is

[tex]-\frac{1}{4}[/tex]