The sample mean can be calculated using:
[tex]\bar{x}=\frac{\Sigma x}{n}[/tex][tex]=\frac{14.5+16.8+15+16.4+15.9}{5}[/tex][tex]=\frac{78.6}{5}[/tex][tex]=15.72[/tex]To find the standard standard deviation S, we will use the formula below:
[tex]S=\sqrt[]{\frac{\Sigma(x_i-\bar{x})^2}{n-1}}[/tex][tex]=\sqrt[]{\frac{(14.5-15.72)^2+(16.8-15.72)^2+(15-15.72)^2+(16.4-15.72)^2+(15.9-15.72)^2}{5-1}}[/tex][tex]=\sqrt[]{\frac{(-1.22)^2+1.08^2+(-0.72)^2+0.68^2+0.18^2}{4}}[/tex][tex]=\sqrt[]{\frac{1.4884+1.1664+0.5184+0.4624+0.00324}{4}}[/tex][tex]=\sqrt[]{\frac{3.668}{4}}[/tex][tex]=\sqrt[]{0.917}[/tex][tex]\approx0.9576[/tex]