Respuesta :

Answer:

a = 4.64

c = 6.57

B = 75

Step-by-step explanation:

Law of sines in a triangle:

a, b and c are the sides.

A, B and C are the angles.

They are related in the following way:

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

Applying the law to the triangle in this question:

[tex]\frac{a}{\sin40}^{^{}}=\frac{7}{\sin B}=\frac{c}{\sin65}[/tex]

The internal angles of a triangle add up to 180º

65 + B + 40 = 180

105 + B = 180

B = 75

So

[tex]\frac{a}{\sin40}^{^{}}=\frac{7}{\sin 75}=\frac{c}{\sin65}[/tex]

The sines are:

sin 40º = 0.64

sin 75º = 0.966

sin 65º = 0.906

Finding a:

[tex]\frac{a}{\sin 40}=\frac{7}{\sin 75}[/tex][tex]\frac{a}{0.64}=\frac{7}{0.966}[/tex]

Applying cross multiplication:

0.966a = 7*0.64

a = (7*0.64)/0.966

a = 4.64

Finding c:

[tex]\frac{7}{\sin 75}=\frac{c}{\sin 65}[/tex][tex]\frac{7}{0.966}=\frac{c}{0.906}[/tex]

0.966c = 7*0.906

c = 7*0.906/0.966

c = 6.565

Ver imagen TristynJ731285