Respuesta :

Answer:

[tex]Tn\text{ = -}\frac{4}{3}(-3)^{n-1}[/tex]

Explanation:

The nth term of a geometric sequence is expressed as;

[tex]\text{T}_{n\text{ }}=ar^{n-1}[/tex]

If the second term is 4;

[tex]\begin{gathered} T_2=\text{ ar} \\ T_{2\text{ }}=\text{ ar= 4} \end{gathered}[/tex]

If the third term is -12, hence;

[tex]\text{T}_{3\text{ }}=ar^2\text{= -12}[/tex]

Solve equation 1 and 2 simultaneously for a and r

Divide both expressions

[tex]\begin{gathered} \frac{ar}{ar^2}=\text{ }\frac{4}{-12} \\ \frac{1}{r}=\frac{4}{-12} \\ r\text{ = -12/4} \\ r\text{ = -3} \end{gathered}[/tex]

Get the first term;

Substitute r = -3 into 1;

Frm 1;

[tex]\begin{gathered} ar\text{ = 4} \\ -3a\text{ = 4} \\ a\text{ = }\frac{-4}{3} \end{gathered}[/tex]

Get the explicit expression;

[tex]\begin{gathered} Tn=ar^{n-1} \\ Tn\text{ =-}\frac{4}{3}(-3)^{n-1^{}^{}} \end{gathered}[/tex]

This gives the required answer