Respuesta :

We solve as follows:

Since we have:

[tex]\lim _{\theta\rightarrow0}\frac{2\sin (\sqrt[]{2}\theta)}{\sqrt[]{2}\theta}[/tex]

We can proceed as follows:

We assign a new denomination:

[tex]\alpha=\sqrt[]{2}\theta[/tex]

And we solve for theta = 0:

[tex]\alpha=\sqrt[]{2}(0)\Rightarrow\alpha=0[/tex]

Now, we re-write the original expression:

[tex]\lim _{\alpha\rightarrow0}\frac{2\sin(\alpha)}{\alpha}\Rightarrow2\lim _{\alpha\rightarrow0}\frac{\sin(\alpha)}{\alpha}=2[/tex]

And, since we already know the following:

[tex]\lim _{\theta\rightarrow0}\frac{\sin (\theta)}{\theta}=1[/tex]

Then, we will have that the solution will be:

[tex]\lim _{\theta\rightarrow0}\frac{2\sin (\sqrt[]{2}\theta)}{\sqrt[]{2}\theta}=2[/tex]