Respuesta :

SOLUTION

The given sequence is

From the sequence it follows

[tex]a=8,d=-3[/tex]

The formula for sum of an arithmetic sequence

[tex]S=\frac{n}{2}(a+l)[/tex]

Since the number of terms is not given then

Using the nth term formula

[tex]a_n=a+(n-1)d[/tex]

Substitute

[tex]a_n=-403,a=8,d=-3[/tex]

Into the nth term formula

[tex]\begin{gathered} -403=8+(n-1)-3 \\ -403=8-3n+3 \\ -403-11=-3n \\ -3n=-414 \\ n=138 \end{gathered}[/tex]

Therefore the sum is

[tex]\begin{gathered} S=\frac{138}{2}(8+(-403)) \\ S=69(-395) \\ S=-27255 \end{gathered}[/tex]

Therefore the solution is:

[tex]S=-27255[/tex]

Ver imagen MooM554618