The formula for the area of a rhombus is A = 1/2(d1 * d2), where d1 and d2 are the lengths of the diagonals.Which are equivalent equations?D1= 2Ad2D1= 2A/d2D2= d1/2AD2= 2A/d1D2= 2Ad1

Respuesta :

ANSWER

d1 = 2A/d2

d2 = 2A/d1

EXPLANATION

We have that the area of a rhombus is given as:

[tex]A\text{ = }\frac{1}{2}(d_1\cdot d_2)[/tex]

We want to find the equivalent equations for d1 and d2.

To do this, all we have to do is make D1 and D2 subjects of the formula.

For d1:

[tex]\begin{gathered} A\text{ = }\frac{1}{2}(d_1\cdot d_2) \\ \Rightarrow\text{ 2 }\cdot A=(d_1\cdot d_2) \\ \Rightarrow d_1\text{ = }\frac{2A}{d_2} \end{gathered}[/tex]

For d2:

[tex]\begin{gathered} A\text{ = }\frac{1}{2}(d_1\cdot d_2) \\ \Rightarrow\text{ 2 }\cdot A=(d_1\cdot d_2) \\ \Rightarrow d_2\text{ = }\frac{2A}{d_1} \end{gathered}[/tex]