ANSWER:
The measure of the arc of the circular is 134°
STEP-BY-STEP EXPLANATION:
We have that the measure of an angle formed when two lines intersect outside a circle is half the difference of the measure of the intercepted arcs, therefore
[tex]\begin{gathered} \alpha=\frac{1}{2}\cdot(\Theta-\theta) \\ \Theta=\text{ big angle} \\ \theta=\text{ small angle} \\ \alpha=46\text{\degree} \\ \Theta=360-x \\ \theta=x \end{gathered}[/tex]Replacing and solving for x:
[tex]\begin{gathered} 46=\frac{1}{2}\cdot(360-x-x) \\ 46\cdot2=360-2x \\ 2x=360-92 \\ x=\frac{268}{2} \\ x=134\text{\degree} \end{gathered}[/tex]