Respuesta :

For angle A, perpendicular side is BC = 12, hypotenuse side is AC = 13 and base side is AB = 5.

Determine the trigonometric corresponding to angle A.

[tex]\begin{gathered} \sin A=\frac{BC}{AC} \\ =\frac{12}{13} \end{gathered}[/tex][tex]\cos A=\frac{5}{13}[/tex][tex]\tan A=\frac{12}{5}[/tex]

For angle C, perpendicular side is AB = 5, base is BC = 12 and hypotenuse is AC =13.

Determine the trigonometric ratio corresponding to angle C.

[tex]\begin{gathered} \sin C=\frac{AB}{AC} \\ =\frac{5}{13} \end{gathered}[/tex][tex]\begin{gathered} \cos C=\frac{BC}{AC} \\ =\frac{12}{13} \end{gathered}[/tex][tex]\begin{gathered} \tan C=\frac{AB}{BC} \\ =\frac{5}{12} \end{gathered}[/tex]