The formula to find the specific heat capacity is
[tex]Q=m\cdot c\cdot\Delta T[/tex]
Where Q is the heat, c is the specific heat capacity, m is the mass, and T represents the variation of the temperature. Use the given magnitudes to find c.
[tex]\begin{gathered} 634J=306g\cdot c\cdot(16.4\degree C-1.5\degree C) \\ 634J=306g\cdot c\cdot14.9\degree C \\ c=\frac{634J}{306g\cdot14.9\degree C} \end{gathered}[/tex]
But, we need to express 14.9°C in Kelvin, just add 273.15.
[tex]\begin{gathered} c=\frac{634J}{306g\cdot288.05K} \\ c=0.00719J\cdot g^{-1}\cdot K^{-1} \end{gathered}[/tex]
Therefore, the chemist can report a heat capacity of 0.00719.