Respuesta :

To find the length of the string we need to remember that in any right triangle:

[tex]\sin \theta=\frac{\text{opp}}{\text{hyp}}[/tex]

In this case the angle is 48°, the opposite leg is 90 and the hypotenuse will be the length of the string then we have that:

[tex]\begin{gathered} \sin 48=\frac{90}{\text{hyp}} \\ \text{hyp}=\frac{90}{\sin 48} \\ \text{hyp}=121.1 \end{gathered}[/tex]

Therefore the length of the string is 121.1 ft