open parentheses fraction numerator f cubed to the power of -2 end exponent over denominator h to the power of negative 1 end exponent end fraction close parentheses to the power of 4.I need this in exponential form, please.

open parentheses fraction numerator f cubed to the power of 2 end exponent over denominator h to the power of negative 1 end exponent end fraction close parenth class=

Respuesta :

First part

numerator f cubed g to the power of negative 2

The numerator can be written as

[tex]f^3g^{-2}[/tex]

Second part

denorminator h raised to the power of negative 1

The numerator can be written as

[tex]h^{-1}[/tex]

combining part one and two

Open parentheses fraction - fraction - close parentheses to the power of 4

This gives

[tex](\frac{f^3g^{-2}}{h^{-1}})^4[/tex]

simplifying the expression to remove negative exponent

Simplifying the numerator

[tex]\begin{gathered} f^3g^{-2}=f^3\times g^{-2} \\ f^3g^{-2}=f^3\times\frac{1}{g^2} \\ f^3g^{-2}\text{ = }\frac{f^3}{g^2} \end{gathered}[/tex]

simplfying the denorminator

[tex]h^{-1}\text{ = }\frac{1}{h}[/tex]

combining simplfied values for numerator and denorminator in the general form we have

[tex]\begin{gathered} (\frac{f^3g^{-2}}{h^{-1}})^4\text{ = }(\frac{\frac{f^3}{g^2}}{\frac{1}{h}})^4 \\ (\frac{f^3g^{-2}}{h^{-1}})^4=\text{ (}\frac{f^3}{g^2}\times h)^4\text{ } \\ (\frac{f^3g^{-2}}{h^{-1}})^4\text{ = (}\frac{f^3h}{g^2})^4 \end{gathered}[/tex]

Hence, the simplified form of the expression is

[tex](\frac{f^3h}{g^2})^4[/tex]