open parentheses fraction numerator f cubed to the power of -2 end exponent over denominator h to the power of negative 1 end exponent end fraction close parentheses to the power of 4.I need this in exponential form, please.

First part
numerator f cubed g to the power of negative 2
The numerator can be written as
[tex]f^3g^{-2}[/tex]Second part
denorminator h raised to the power of negative 1
The numerator can be written as
[tex]h^{-1}[/tex]combining part one and two
Open parentheses fraction - fraction - close parentheses to the power of 4
This gives
[tex](\frac{f^3g^{-2}}{h^{-1}})^4[/tex]simplifying the expression to remove negative exponent
Simplifying the numerator
[tex]\begin{gathered} f^3g^{-2}=f^3\times g^{-2} \\ f^3g^{-2}=f^3\times\frac{1}{g^2} \\ f^3g^{-2}\text{ = }\frac{f^3}{g^2} \end{gathered}[/tex]simplfying the denorminator
[tex]h^{-1}\text{ = }\frac{1}{h}[/tex]combining simplfied values for numerator and denorminator in the general form we have
[tex]\begin{gathered} (\frac{f^3g^{-2}}{h^{-1}})^4\text{ = }(\frac{\frac{f^3}{g^2}}{\frac{1}{h}})^4 \\ (\frac{f^3g^{-2}}{h^{-1}})^4=\text{ (}\frac{f^3}{g^2}\times h)^4\text{ } \\ (\frac{f^3g^{-2}}{h^{-1}})^4\text{ = (}\frac{f^3h}{g^2})^4 \end{gathered}[/tex]Hence, the simplified form of the expression is
[tex](\frac{f^3h}{g^2})^4[/tex]