Find f such that the given conditions are satisfied. f'(x) = x2 + 3, f(0) = 21 f(x) X3 + 3x + 21 3 f(x) = x3 + 3x2 + 21 f(x) = +3 + 3x f(x) = x3 + 3x + 21

Find f such that the given conditions are satisfied fx x2 3 f0 21 fx X3 3x 21 3 fx x3 3x2 21 fx 3 3x fx x3 3x 21 class=

Respuesta :

We have to find f(x).

First we have to integrate f'(x) and then satisfy the initial condition f(0).

Integrating f'(x):

[tex]f(x)=\int (x^2+3)dx=\frac{x^3}{3}+3x+C[/tex]

We can then replace x with x=0 and f(x) with f(0)=21 to find the value of the constant C:

[tex]\begin{gathered} f(0)=21=\frac{0^3}{3}+3\cdot0+C \\ C=21 \end{gathered}[/tex]

Then, the function f(x) is:

[tex]f(x)=\frac{x^3}{3}+3x+21[/tex]

Answer: f(x) = x^3/3 + 3x + 21 (Option A)