triangle PQR has vertices P(0,0), Q(8,-4) and R(-6,4). Find the vertices of P'Q'R' after each translationand on problem C there is a R' i just couldn't scroll all the way down

triangle PQR has vertices P00 Q84 and R64 Find the vertices of PQR after each translationand on problem C there is a R i just couldnt scroll all the way down class=

Respuesta :

The translation of 6 units right increase the x-coordinate by 6 and 5 units up increase the y -coordinate by 5 units.

So coordinates of triangle P'Q'R' after translation is,

[tex]P^{\prime}(0+6,0+5)\rightarrow P^{\prime}(6,5)[/tex][tex]Q^{\prime}(8+6,-4+5)\rightarrow Q^{\prime}(14,1)[/tex][tex]R^{\prime}(-6+6,4+5)\rightarrow R^{\prime}(0,9)[/tex]

So new coordinates are,

P'(6,5)

Q'(14,1)

R'(0,9)

PART B.

The translation of 8 units left means that x-coordinate decrease by 8 units and 2 unit down means that y-coordinate decrease by 2 units.

Determine the coordinates of vertices of triangle after trnaslation.

[tex]P^{\prime}(0-8,0-2)\rightarrow P^{\prime}(-8,-2)[/tex][tex]Q^{\prime}(8-8,-4-2)\rightarrow Q^{\prime}(0,-6)[/tex][tex]R^{\prime}(-6-8,4-2)\rightarrow R^{\prime}(-14,2)[/tex]

So coordinates of triangle P'Q'R' is,

P'(-8,-2)

Q'(0,-6)

R'(-14,2)

Part C:

The translation of 3 units right means x-coordinate increase by 3 and 4 units down means that y-coordinate decrease by 4.

Determine the coordinate of triangle after translation.

[tex]P^{\prime}(0+3,0-4)\rightarrow P^{\prime}(3,-4)[/tex][tex]Q^{\prime}(8+3,-4-4)\rightarrow Q^{\prime}(11,-8)[/tex][tex]R^{\prime}(-6+3,4-4)\rightarrow R^{\prime}(-3,0)[/tex]

So coordinates of triangle P'Q'R' is,

P'(3,-4)

Q'(11,-8)

R'(-3,0)