Respuesta :

We are given the following equation:

[tex]sinxcosx=\frac{1}{4}[/tex]

First, we will multiply both sides by 2:

[tex]2sinxcosx=\frac{2}{4}[/tex]

Simplifying the right side:

[tex]2sinxcosx=\frac{1}{2}[/tex]

Now, we use the following trigonometric identity:

[tex]2sinxcosx=sin(2x)[/tex]

Applying the property we get:

[tex]sin(2x)=\frac{1}{2}[/tex][tex]sin(2x)=\frac{1}{2}[/tex]

Now, we take the inverse function of sine:

[tex]2x=arcsin(\frac{1}{2})[/tex]

Solving the operation on the right side we have two possible solutions:

[tex]2x=\frac{\pi}{6}+2n\pi[/tex]

and:

[tex]2x=\frac{5\pi}{6}+2n\pi[/tex]

Dividing both sides by 2:

[tex]x=\frac{\pi}{12}+n\pi[/tex]

and

[tex]x=\frac{5\pi}{12}+n\pi[/tex]