Respuesta :

GIVEN:

The following values are given:

[tex]\begin{gathered} \log _2x=a \\ \log _2y=b \end{gathered}[/tex]

We are to evaluate:

[tex]\log _2x^2y[/tex]

CALCULATION:

Step 1: Apply the law of logarithm

[tex]\log _z(m\times n)=\log _zm+\log _zn[/tex]

Therefore, we have

[tex]\log _2x^2y=\log _2x^2+\log _2y[/tex]

Step 2: Apply the law of logarithm

[tex]\log _am^n=n\log _am[/tex]

Therefore, the first expression becomes:

[tex]\log _2x^2=2\log _2x[/tex]

Hence, the expression becomes:

[tex]\Rightarrow2\log _2x+\log _2y[/tex]

Step 3: Substitute for a and b in the expression above

[tex]\begin{gathered} \log _2x=a \\ \log _2y=b \end{gathered}[/tex]

Therefore, the expression becomes:

[tex]2\log _2x+\log _2y=2a+b[/tex]

ANSWER:

[tex]\log _2x^2y=2a+b[/tex]