inSelect the correct answer from each drop-down menu.Using the image below, select the best answer from each pull-down to complete the statements.сThe measure of

inSelect the correct answer from each dropdown menuUsing the image below select the best answer from each pulldown to complete the statementsсThe measure of class=

Respuesta :

Given:

The triangle ABC is given.

To find:

a) The angle FED.

b) The complementary angle of the angle CBD.

Explanation:

a) Using the angle sum property of the triangle FED,

[tex]\begin{gathered} \angle FED+\angle EDF+\angle DFE=180 \\ 16x-8+2x+9+35=180 \\ 18x+36=180 \\ 18x=180-36 \\ 18x=144 \\ x=8 \end{gathered}[/tex]

So, the angle FED becomes,

[tex]\begin{gathered} \angle FED=16x-8 \\ =16(8)-8 \\ =128-8 \\ \angle FED=120^{\circ} \end{gathered}[/tex]

b) Next let us find the angle CBD.

[tex]\begin{gathered} \angle CBD=-2x+81 \\ =-2(8)+81 \\ =-16+81 \\ \angle CBD=65^{\circ} \end{gathered}[/tex]

Finding the angle EDF,

[tex]\begin{gathered} \angle EDF=2x+9 \\ =2(8)+9 \\ =16+9 \\ =25^{\circ} \end{gathered}[/tex]

Since the sum of the angles CBD and EDF are 90 degrees.

So, angle CBD and EDF are complementary angles.

Final answer:

a) The angle is,

[tex]\begin{equation*} \angle FED=120^{\circ} \end{equation*}[/tex]

b) Angle CBD and EDF are complementary angles.