Respuesta :

Solution:

The slope is expressed as

[tex]slope=\frac{y_2-y_1}{x_2-x_1}[/tex]

Given the table of values for function 1 below:

we have

[tex]\begin{gathered} x_1=0 \\ y_1=-3.5 \\ x_2=4 \\ y_2=-1.5 \end{gathered}[/tex]

This gives

[tex]\begin{gathered} slope=\frac{-1.5-(-3.5)}{4-0}=\frac{-1.5+3.5}{4}=\frac{2}{4} \\ \Rightarrow slope=\frac{1}{2} \\ \end{gathered}[/tex]

For the function 2, we have the graph defined by the line q below:

In the above graph, the line passes through the points (0, -4) and (4, 0).

This implies that

[tex]\begin{gathered} x_1=0 \\ y_1=-4 \\ x_2=4 \\ y_2=0 \end{gathered}[/tex]

Thus, we have the slope to be evaluated as

[tex]\begin{gathered} slope=\frac{0-(-4)}{4-0}=\frac{4}{4} \\ \Rightarrow slope=1 \end{gathered}[/tex]

Since function 1 has a slope of 1/2, and function 2 has a slope of 1, we can conclude that

function 2 has a greater

Ver imagen KaylerJ412837
Ver imagen KaylerJ412837