Evaluate −7c2−7c−9/−7d when c=−2 and d=1. Enter an integer or a fraction.

Replace each variable with their respective values on the given expression to evaluate it:
[tex]\begin{gathered} c=-2 \\ d=1 \\ \Rightarrow\frac{-7c^2-7c-9}{-7d}=\frac{-7(-2)^2-7(-2)-9}{-7(1)} \end{gathered}[/tex]Use the order of operations to simplify the expression. On the numerator, solve for powers first:
[tex]\frac{-7(-2)^2-7(-2)-9}{-7(1)}=\frac{-7(4)^{}-7(-2)-9}{-7(1)}[/tex]Then, solve for products both in the numerator and denominator:
[tex]\frac{-7(4)^{}-7(-2)-9}{-7(1)}=\frac{-28^{}+14-9}{-7}[/tex]Then, solve for additions and substractions from left to right:
[tex]\begin{gathered} \frac{-28^{}+14-9}{-7}=\frac{-14-9}{-7} \\ =\frac{-23}{-7} \end{gathered}[/tex]Finally, simplify the fraction using the law of signs:
[tex]\frac{-23}{-7}=\frac{23}{7}[/tex]Therefore, the answer is:
[tex]\frac{23}{7}[/tex]