What is a rule for the nth term of Geometric sequence -3,-6,-12,-24,-48

The sequence is given as,
[tex]-3,\text{ -6, -12, -24, -48.......}[/tex]For the given sequence,
[tex]\begin{gathered} First\text{ term\lparen a\rparen = -3} \\ Common\text{ ratio\lparen r\rparen = }\frac{-6}{-3}=\text{ 2} \end{gathered}[/tex]nth term of a geometric progression is given as,
[tex]a_n\text{ = ar}^{n-1}[/tex]Where,
a = First term
r = common ratio
Therefore the nth term is calculated as,
[tex]a_n=\text{ -3\lparen2\rparen}^{n-1}[/tex]Thus the required answer is,
[tex]a_n=\text{ -3\lparen2\rparen}^{n-1}[/tex]