Respuesta :

The sequence is given as,

[tex]-3,\text{ -6, -12, -24, -48.......}[/tex]

For the given sequence,

[tex]\begin{gathered} First\text{ term\lparen a\rparen = -3} \\ Common\text{ ratio\lparen r\rparen = }\frac{-6}{-3}=\text{ 2} \end{gathered}[/tex]

nth term of a geometric progression is given as,

[tex]a_n\text{ = ar}^{n-1}[/tex]

Where,

a = First term

r = common ratio

Therefore the nth term is calculated as,

[tex]a_n=\text{ -3\lparen2\rparen}^{n-1}[/tex]

Thus the required answer is,

[tex]a_n=\text{ -3\lparen2\rparen}^{n-1}[/tex]