Respuesta :

[tex]\text{distance = }\sqrt[]{45}[/tex]

Explanation

Step 1

the distance between 2 points P1 and P2 is given by:

[tex]\begin{gathered} \text{distance}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{where} \\ P1(x_1,y_1)andP2(x_2,y_2) \end{gathered}[/tex]

Step 2

let

P1=M(4,0)

P2=N(-2,-3)

replace

[tex]\begin{gathered} \text{distance}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{distance}=\sqrt[]{(-2-4)^2+(-3-0)^2} \\ \text{distance}=\sqrt[]{(-6)^2+(-3)^2} \\ \text{distance}=\sqrt[]{36+9} \\ \text{distance}=\sqrt[]{45} \\ \end{gathered}[/tex]

I hope this helps you