Respuesta :

Answer:

[tex]A\text{ : 24 m}^2[/tex]

Explanation:

Here, we want to get the area of the Rhombus

Mathematically, we have that as:

[tex]A\text{ = }\frac{1}{4}d\sqrt{P^2-4d^2}[/tex]

where:

d is the length of the diagonal, given as 6m

P is the perimeter of the Rhombus, given as 20 m

Substituting the values, we have it that:

[tex]\begin{gathered} A\text{ = }\frac{1}{4}6\sqrt{20^2-4\times6^2} \\ \\ A\text{ = }\frac{1}{4}6\sqrt{400-144} \\ \\ A\text{ = }\frac{1}{4}\times6\times16\text{ = 24 m}^2 \end{gathered}[/tex]