Explanation
The beat frequency is equal to the complete value of the alteration in the frequency of the two waves. The count of beats per second is equivalent to the difference in frequencies of two waves is called beat frequency.
it is given by the expression:
[tex]\begin{gathered} f_b=\lvert f_2-f_1\rvert \\ \text{where} \\ f_b\text{ is }beat\text{ frequency} \\ f_1\text{ is frequency of first wave } \\ f_2\text{ is frequency of second wave} \end{gathered}[/tex]then
Step 1
let
[tex]\begin{gathered} f_1=312\text{ Hz} \\ f_2=300\text{ Hz} \end{gathered}[/tex]now,replace
[tex]\begin{gathered} f_b=\lvert f_2-f_1\rvert \\ f_b=\lvert(300-312)Hz\rvert \\ f_b=\lvert-12Hz\rvert \\ f_{b(A)}=12\text{ Hz} \end{gathered}[/tex]Step 2
do, the same for the same pair of frequencies
let
[tex]\begin{gathered} f_1=852\text{Hz} \\ f_2=857\text{ Hz} \end{gathered}[/tex]now,replace
[tex]\begin{gathered} f_b=\lvert f_2-f_1\rvert \\ f_b=\lvert(857-852)Hz\rvert \\ f_b=\lvert5Hz\rvert \\ f_{b(B)}=5\text{ Hz} \end{gathered}[/tex]Step 3
the last pair of frequencies:
let
[tex]\begin{gathered} f_1=1024\text{Hz} \\ f_2=1000\text{Hz} \end{gathered}[/tex]now,replace
[tex]\begin{gathered} f_b=\lvert f_2-f_1\rvert \\ f_b=\lvert(1000-1024)Hz\rvert \\ f_b=\lvert-24Hz\rvert \\ f_{b(C)}=24\text{Hz} \end{gathered}[/tex]I hope this helps you