Given the points below,
[tex]\begin{gathered} (x_1,y_1)=(7,-3) \\ (x_2,y_2)=(4,-8) \end{gathered}[/tex]The formula to find the equation of a straight line is given below as,
[tex]\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}[/tex]Substituting the variables into the formula of a straight line above,
[tex]\begin{gathered} \frac{y-(-3)}{x-7}=\frac{-8-(-3)}{4-7} \\ \frac{y+3}{x-7}=\frac{-8+3}{-3} \\ \frac{y+3}{x-7}=\frac{-5}{-3}=\frac{5}{3} \\ \frac{y+3}{x-7}=\frac{5}{3} \\ \text{Crossmultiply} \\ 3(y+3)=5(x-7) \\ 3y+9=5x-35 \\ 5x-3y=35+9 \\ 5x-3y=44 \end{gathered}[/tex]The standard form of a straight is given as Ax + By = C
Hence, the answer is 5x -3y = 44