Respuesta :

[tex]\text{The given function is f(x)=}x^3\text{.}[/tex]

[tex]\text{Let f(x)=y.}[/tex][tex]y=x^3[/tex]

Taking cube root on both sides, we get

[tex]\sqrt[3]{y}=x[/tex][tex]R\text{eplace x=}f^{-1}(y)\text{ since we taken y=f(x)}[/tex]

[tex]f^{-1}(y)=\sqrt[3]{y}[/tex][tex]\text{ Replace x=y, we get }f^{-1}(x)=\sqrt[3]{x}\text{ is the }inverse\text{ function of f(x)=}x^3\text{.}[/tex]

The given two graphs are parabolic graphs. Those are not the inverse of the given function.

[tex]\text{The graph of the function is }f^{-1}(x)=\sqrt[3]{x}\text{ is}[/tex]

Hence this is the required graph.

Ver imagen SaryiahV664659