Explanation
Step 1
take the coordinates of the vertices
so
a)let
[tex]\begin{gathered} R(2,-1) \\ S(5,-2) \\ T(4,-6) \\ Q(-1,-4) \end{gathered}[/tex]
Step 2
reflection acrros y axis:
The rule for reflecting over the Y axis is to negate the value of the x-coordinate of each point, but leave the -value the same
[tex](x,y)\Rightarrow(x,-y)[/tex]
hence
[tex]\begin{gathered} R(2,-1)\Rightarrow R_1(2,1) \\ S(5,-2)\Rightarrow S_2(5,2) \\ T(4,-6)\Rightarrow T_2(4,6) \\ Q(-1,-4)\Rightarrow Q_2(-1,4) \end{gathered}[/tex]
Step 3
rotation 360 °
A rotation of 360 degrees results in a point with coordinates ( , ) , in other words teh coordinates are the same, so
the answer is
[tex]\begin{gathered} R^{\prime}(2,1) \\ S^{\prime}(5,2) \\ T^{\prime}(4,6) \\ Q^{\prime}(-1,4) \end{gathered}[/tex]