A Grade 11 class has 45 students. The following records shows the typical number of students who were absent on a particular school day.Compute the probabilities for each random variables and find the mean, variance, and standard deviation of the distribution.

A Grade 11 class has 45 students The following records shows the typical number of students who were absent on a particular school dayCompute the probabilities class=

Respuesta :

The Solution:

Given the table below:

Let the number of students absent be represented with x.

[tex]\text{ Total number of students =12+8+5+7+13=45}[/tex]

To find the individual probabilities:

[tex]P(x=12)=\frac{12}{45}=\frac{4}{15}[/tex][tex]P(x=8)=\frac{8}{45}=\frac{8}{45}[/tex][tex]P(x=12)=\frac{5}{45}=\frac{1}{9}[/tex][tex]P(x=12)=\frac{7}{45}=\frac{7}{45}[/tex][tex]P(x=13)=\frac{13}{45}=\frac{13}{45}[/tex]

So, we have that probability table as:

To find the mean of x:

[tex]\text{Mean(x)}=E(x)=\sum ^5_{i\mathop=1}x_ip(x=i)[/tex]

This means that:

[tex]\text{Mean(x)}=E(x)=12(\frac{12}{45})+8(\frac{8}{45})+5(\frac{5}{45})+7(\frac{7}{45})+13(\frac{13}{45})[/tex][tex]\begin{gathered} \text{Mean(x)}=E(x)=3.2+1.42222+0.55556+1.08889+3.75556 \\ =10.02223\approx10\text{ students} \end{gathered}[/tex]

To find the variance, we shall use the formula below:

[tex]\text{Var(x)}=\sum ^5_{i\mathop=1}(x_i-\mu)^2p(x_i)[/tex][tex]\begin{gathered} \text{Var(x)}=(12-10.022)^2(\frac{12}{45})+(8-10.022)^2(\frac{8}{45})+(5-10.022)^2(\frac{5}{45}) \\ +(7-10.022)^2(\frac{7}{45})+(13-10.022)^2(\frac{13}{45}) \end{gathered}[/tex][tex]\text{Var(x)}=1.04333+0.72684+2.80228+1.42061+2.56201[/tex][tex]\text{Var(x)}=8.55507\approx9\text{ students}[/tex]

To find the standard deviation:

[tex]\text{ Standard deviation=}\sqrt[]{var(x)}=\sqrt[]{8.55507}=2.92490\approx3\text{ students}[/tex]

Therefore, the correct answers are:

Mean = 10 students

Variance = 9 students

Standard Deviation = 3 students

Ver imagen MargalitM517074
Ver imagen MargalitM517074