Respuesta :

[tex]1.2y+6.5+(-3.25y)=0.14-4.29+(-2y)[/tex]

The multiple of 10 that can be used to multiply the equation is 100, because of the figures in their hundredth,

Multiplying the equation by 100,

[tex]\begin{gathered} \text{Multiply both sides by 100} \\ 100(1.2y+6.5+(-3.25y))=100(0.14-4.29+(-2y)) \\ \end{gathered}[/tex]

Open the brackets,

[tex]120y+650+(-325y)=14-429+(-200y)_{}[/tex]

Collect like terms,

[tex]\begin{gathered} 120y+650-325y=14-429-200y \\ 650-14+429=325y-120y-200y \\ 1065=15y \\ \text{Divide both sides by 15} \\ \frac{1065}{15}=\frac{15y}{15} \\ 71=y \\ y=71 \end{gathered}[/tex]

Hence, the multiple of 10 that can remove all the decimals is 100 and the best option is B.