Respuesta :

Given:

S varies directly as the 2​/3 power of​ T

So,

[tex]\begin{gathered} S\propto\sqrt[3]{T^2} \\ S=k\cdot\sqrt[3]{T^2} \end{gathered}[/tex]

Where (k) is the constant of proportionality

We will find (k) using the given condition: S=75 when T=125

So,

[tex]\begin{gathered} 75=k\cdot\sqrt[3]{125^2} \\ 75=k\cdot25 \\ \\ k=\frac{75}{25}=3 \end{gathered}[/tex]

So, the relation will be:

[tex]S=3\sqrt[3]{T^2}[/tex]

We will find S when T = 64

So,

[tex]S=3\cdot\sqrt[3]{64^2^{}}=3\cdot16=48[/tex]

so, the answer will be:

[tex]S=48[/tex]