Find two positive numbers whose Difference is two and whose product is 1443

Explanation
In the question, we are asked to find two positive numbers whose Difference is two and whose product is 1443.
If we let the numbers be x and y, therefore we can create the equation below,
[tex]\begin{gathered} x-y=2\text{ ------(1)} \\ xy=1443-----(2) \end{gathered}[/tex]But;
[tex]x=y+2----(3)[/tex]Substitute equation 3 in equation 2
[tex]\begin{gathered} y(y+2)=1443 \\ y^2+2y=1443 \\ y^2+2y-1443=0 \end{gathered}[/tex]Using the quadratic formula;
[tex]\begin{gathered} y=_{}\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{where a =1, b=2 and c=-1443} \end{gathered}[/tex]Therefore;
[tex]\begin{gathered} y_{1,\: 2}=\frac{-2\pm\sqrt[]{2^2-4\times\: 1\times\mleft(-1443\mright)}}{2\times\: 1} \\ y_{1,\: 2}=\frac{-2\pm\: 76}{2\times\: 1} \\ y_1=\frac{-2+76}{2\times1}=37 \\ y_2=\frac{-2-76}{2\times\: 1}=-39 \end{gathered}[/tex]Since we need only the positive value, we will substitute y=37 in equation three.
[tex]\begin{gathered} x=37+2 \\ x=39 \end{gathered}[/tex]Answer: The two numbers are 37 and 39