Respuesta :

For a quadratic function

[tex]ax^2+bx+c=0[/tex]

The x-coordinates for the roots can be found using the Bhaskara formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2a}[/tex]

So, to solve this question, follow the steps below.

Step 01: Find a, b and c.

For the equation

[tex]f(x)=5x^2+2x+1[/tex]

a = 5

b = 2

c = 1

Step 02: Substitute the values in the Bhaskara formula to find x.

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2a} \\ x=\frac{-2\pm\sqrt[]{2^2-4\cdot5\cdot1}}{2\cdot5} \\ x=\frac{-2\pm\sqrt[]{4-20}}{10} \\ x=\frac{-2\pm\sqrt[]{-16}}{10} \end{gathered}[/tex]

Since i² = -1, you can substitute -16 by 16*i²:

[tex]\begin{gathered} x=\frac{-2\pm\sqrt[]{16\cdot i^2}}{10}=\frac{-2\pm\sqrt[]{16}\cdot\sqrt[]{i^2}}{10} \\ x=\frac{-2\pm4\cdot i}{10} \\ x=\frac{-1\pm2i}{5} \end{gathered}[/tex]

The roots are:

[tex]\begin{gathered} x_1=\frac{-1+2i}{5} \\ \text{and} \\ x_2=\frac{-1-2i}{5} \end{gathered}[/tex]

Step 03: Evaluate where the equation crosses the x-axis.

When the value inside the root is negative, it means that the equation does not cresses the x-axis.

Also, you can graph the equation to observe it:

Answer:

[tex]x=\frac{-1\pm2i}{5},\text{ never}[/tex]

Ver imagen VahanD738403