Respuesta :

68 68 70 61 67 71 63 67



Step 1: Write the formula of standard deviation

[tex]\text{Stanadard deviation = }\sqrt[]{\frac{Sum(x\text{ - }\mu)^2}{n}}[/tex][tex]\begin{gathered} \text{Where } \\ n\text{ = number of data } \\ \mu\text{ = mean} \end{gathered}[/tex]

n = 8

Step 2: Find the mean

[tex]\begin{gathered} \operatorname{mean}\text{ }\mu\text{ = }\frac{\sum ^{}_{\text{ }}x}{n} \\ \mu\text{ = }\frac{68\text{ + 86 + 70 + 61 + 67 + 71 + 63 + 67}}{8} \\ \mu\text{ = }\frac{535}{8} \\ \mu\text{ = 66.9} \end{gathered}[/tex]

Step 3: find the standard deviation

Next, substitute to find the standard deviation

[tex]\begin{gathered} \text{standard deviation = }\sqrt[]{\frac{sum(x\text{ - }\mu)^2}{n}} \\ =\text{ }\sqrt[]{\frac{78.88}{8}} \\ =\text{ }\sqrt[]{9.86} \\ =\text{ 3.14} \end{gathered}[/tex]

standard deviation = 3.14

Final answer

The number of data within the standard deviation of the mean = 5

Ver imagen NoahE583834
Ver imagen NoahE583834