y - 4 = -1/2 (x +6) (option A)
Explanation:
we apply the slope-form formula:
[tex]y-y_1=m(x-x_1)[/tex]The points: (-6,4) and (2,0) = (x1, y1) and (x2, y2)
[tex]\begin{gathered} \text{slope formula = }m\text{ = }\frac{y_2-y_1}{x_2-x_1} \\ m\text{ = }\frac{0-4}{2-(-6)}=\frac{-4}{2+6}=\frac{-4}{8} \\ m\text{ = -1/2} \end{gathered}[/tex]we pick any of the points and insert into the point-slope formula:
Using point (-6, 4)
y - 4 = -1/2 (x -(-6))
y - 4 = -1/2 (x +6)
Hence, the point-slope form of the equation below that represents the line that passes through the points (-6,4) and (2,0) is y - 4 = -1/2 (x +6) (option A)