The given equation is
[tex](5-2x)^4[/tex]to find the second derivative.
for that let us find the first derivative,
use the formula,
[tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex]apply the chian rule,
[tex]\begin{gathered} =4(5-2x)\frac{d}{dx}(5-2x) \\ =4\mleft(5-2x\mright)^3\mleft(-2\mright) \\ =-8\mleft(5-2x\mright)^3 \end{gathered}[/tex]Now, let us find the second derivative.
[tex]\frac{d}{dx}(-8(5-2x)^3)[/tex]take out the constant,
[tex]-8\frac{d}{dx}((5-2x)^3)[/tex]use the formula,
[tex]\begin{gathered} \frac{d}{dx}(x^n)=nx^{n-1} \\ \end{gathered}[/tex]apply the chain rule,
[tex]\begin{gathered} =3(5-2x)^2\frac{d}{dx}(5-2x) \\ =-8\cdot\: 3(5-2x)^2(-2) \\ =48\mleft(5-2x\mright)^2 \end{gathered}[/tex]the answer is
[tex]48(5-2x)^2[/tex]