Respuesta :

Let's do step by step:

First case: 3 and 6. We have to factor these numbers:

[tex]\text{Factorizing 3 : 1}\times3[/tex][tex]\text{Factorizing 6: 1}\times2\times3[/tex]

Thus the prime numbers will be 2 and 3. The Least common multiple will be:

[tex]\text{LCM(3,6) = 2}\times3\text{ = 6}[/tex]

The second case, same steps:

[tex]\text{Factorizing 5 : 1}\times5[/tex][tex]\text{Factorizing 6: 1}\times2\times3[/tex]

Thus the prime numbers will be 2,3 and 5. The Least common multiple will be:

[tex]LCM(5,6)\text{ = 2}\times3\times5=30[/tex]

Third case:

[tex]\text{Factorizing 3 : 1}\times3[/tex][tex]\text{Factorizing 10 : 1}\times2\times5[/tex]

Thus the prime numbers will be 2,3 and 5. The Least common multiple will be:

[tex]LCM(3,10)\text{ = 2}\times3\times5=30[/tex]

Last case:

[tex]\text{Factorizing 5 : 1}\times5[/tex][tex]\text{Factorizing 10 : 1}\times2\times5[/tex]

Thus the prime numbers will be 2 and 5. The Least common multiple will be:

[tex]LCM(5,10)\text{ = 2}\times5=10[/tex]

Answer: The pairs that have a least common multiple of 30 are 5 and 6, and 3 and 10.