Respuesta :

Answer:

[tex]\boxed{f^{\prime}(x)=x^2^{}-\frac{1}{2}}[/tex]

Explanation:

Step 1. The function we have is:

[tex]f(x)=\frac{x^3}{3}-\frac{x}{2}[/tex]

And we are asked to find the derivative of the function. The rule to find the derivative for this type of function is:

[tex]\begin{gathered} \text{for a function }of\text{ the form} \\ f(x)=ax^n \\ \text{The derivative is:} \\ f^{\prime}(x)=a(n)x^{n-1} \end{gathered}[/tex]

Step 2. Before we apply the derivative rule, remember the following:

[tex]\begin{gathered} \text{for a function } \\ f(x)=g(x)+h(x) \\ \text{The derivative is:} \\ f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x) \end{gathered}[/tex]

This means that we need to derivate each part or term of the function and combine them for the total derivative.

Step 3. Apply the derivative rule from step 1 to the given function.

First we rewrite the function as follows:

[tex]\begin{gathered} f(x)=\frac{x^3}{3}-\frac{x}{2} \\ \downarrow \\ f(x)=\frac{1}{3}x^3-\frac{1}{2}x^1 \end{gathered}[/tex]

Apply the derivative rule:

[tex]f^{\prime}(x)=\frac{1}{3}(3)x^{3-1}-\frac{1}{2}(1)x^{1-1}[/tex]

Step 4. The last step is to simplify the expression:

[tex]\begin{gathered} f^{\prime}(x)=\frac{1}{3}(3)x^{3-1}-\frac{1}{2}(1)x^{1-1} \\ \downarrow \\ f^{\prime}(x)=\frac{1}{3}(3)x^2-\frac{1}{2}(1)x^0 \\ f^{\prime}(x)=x^2-\frac{1}{2}x^{^0} \\ \sin ce^{} \\ x^0=1 \\ \downarrow\text{ The result is }\downarrow \\ f^{\prime}(x)=x^2-\frac{1}{2} \end{gathered}[/tex]

Answer:

[tex]\boxed{f^{\prime}(x)=x^2^{}-\frac{1}{2}}[/tex]