Do the following rectangles have the same perimeter, area, or both?6 cmUS6 cm4 cm9 cmChoose 1 answer:Same area onlySame perimeter onlySame area and perimeter

Let's calculate the perimeter and area of both rectangles.
The area is the product of width and height, while the perimeter is the sum of the lengths of the 4 sides.
For the first rectangle with width = 6cm and height = 6cm:
[tex]\begin{gathered} \text{Area}=(6\operatorname{cm})\cdot(6\operatorname{cm}) \\ \text{Area}=36\operatorname{cm}^2 \end{gathered}[/tex]For the perimeter we add up all the 4 sides, 6cm long each:
[tex]\begin{gathered} \text{Perimeter}=6\operatorname{cm}+6\operatorname{cm}+6\operatorname{cm}+6\operatorname{cm} \\ \text{Perimeter}=24\operatorname{cm} \end{gathered}[/tex]For the second rectangle, we follow exactly the same process.
The area is the product between 4cm (its width) and 9cm (its height):
[tex]\begin{gathered} \text{Area}=(4\operatorname{cm})\cdot(9\operatorname{cm}) \\ \text{Area}=36\operatorname{cm}^2 \end{gathered}[/tex]For the perimeter, we have two sides of length 4cm (top and bottom sides), and the other 2 with length 9cm (left and right sides). Then, its perimeter is:
[tex]\begin{gathered} \text{Perimeter}=4\operatorname{cm}+4\operatorname{cm}+9\operatorname{cm}+9\operatorname{cm} \\ \text{Perimeter}=8\operatorname{cm}+18\operatorname{cm} \\ \text{Perimeter}=26\operatorname{cm} \end{gathered}[/tex]Then:
Rectangle 1:
Area = 36 square centimeters.
Perimeter = 24 centimeters.
Rectangle 2:
Area = 36 square centimeters.
Perimeter = 26 centimeters.
Then, both rectangles have the same area, but they don't have the same perimeter.
The correct option is A). Same area only.