Use trigonometric identities, algebraic methods, and inverse trigonometric functions, as necessary, to solve the following trigonometric equation on the interval [0, 2x),Round your answer to four decimal places, if necessary. If there is no solution, indicate "No Solution."5cos(x) + 7cos(x) = -2

Use trigonometric identities algebraic methods and inverse trigonometric functions as necessary to solve the following trigonometric equation on the interval 0 class=

Respuesta :

We can see that the expression is a quadratic expression of the form:

[tex]5\cos ^2(x)+7\cos (x)+2=0[/tex]

Now we can say:

[tex]\cos (x)=\tau[/tex]

And use the quadratic equation:

[tex]\begin{gathered} 5\tau^2+7\tau+2=0 \\ \tau_{1,2}=\frac{-7\pm\sqrt[]{7^2-4\cdot5\cdot2}}{2\cdot5}=\frac{-7\pm\sqrt[]{49-40}}{10}=\frac{-7\pm3}{10} \\ \tau_1=\frac{-7+3}{10}=-\frac{4}{10}=-\frac{2}{5} \\ \tau_2=\frac{-7-3}{10}=-\frac{10}{10}=-1 \end{gathered}[/tex]

The solutions are the values of x such:

[tex]\begin{gathered} \cos (x)=-1 \\ \cos (x)=-\frac{2}{5} \end{gathered}[/tex]

We know that if x = π, cos(x) = -1. Thus, π is a solution.

The other solutions are:

[tex]\cos (x)=-\frac{2}{5}[/tex]

And since cos has a period of 2π, the solutions are:

The two other solutions for [0, 2pi) are:

[tex]x=\cos ^{-1}(-\frac{2}{5})\approx1.9823[/tex]

And:

[tex]x=2\pi-\cos ^{-1}(-\frac{2}{5})\approx4.3008[/tex]

All the solutions in the interval are:

[tex]x=1.9823,\pi,4.3008^{}[/tex]