Let x equals negative 31 times pi over 6 periodPart A: Determine the reference angle of x. Part B: Find the exact values of sin x, tan x, and sec x in simplest form.

Let x equals negative 31 times pi over 6 periodPart A Determine the reference angle of x Part B Find the exact values of sin x tan x and sec x in simplest form class=

Respuesta :

An angle's reference angle is the measure of the smallest, positive, acute angle t formed by the terminal side of the angle t and the horizontal axis.

Given the value of x to be

[tex]x=\frac{-31\pi}{6}[/tex]

To get the reference angle of x, we will need to add an even multiple of pi to x

So we will have

[tex]6\pi+(-\frac{31\pi}{6})=\frac{5\pi}{6}[/tex]

We have the reference angle to be:

[tex]\frac{5\pi}{6}[/tex]

Part B

To find sin x

we will have

[tex]\begin{gathered} \\ \sin x=\sin \frac{5\pi}{6}=\frac{1}{2} \\ \text{Therefore } \\ \sin x=\frac{1}{2} \end{gathered}[/tex]

Similarly, we will have tan x to be

[tex]\begin{gathered} \tan x=\tan \frac{5\pi}{6}=-\frac{\sqrt[]{3}}{3} \\ \end{gathered}[/tex]

For sec x

[tex]\begin{gathered} \sec x=\frac{1}{\cos x} \\ so\text{ let us check cos x} \\ \cos x=\cos \frac{5\pi}{6}=-\frac{\sqrt[]{3}}{2} \\ \\ \text{Next,}we\text{ can compute} \\ \sec x=\frac{1}{\cos x}=\frac{1}{-\frac{\sqrt[]{3}}{2}}=-\frac{2}{\sqrt[]{3}} \end{gathered}[/tex]

Simplifying further

[tex]\sec x=\frac{-2\sqrt[]{3}}{3}[/tex]

Ver imagen AlejoT37381