we have the function
[tex]P(t)=\frac{600}{1+8e^{(-0.45t)}}[/tex]
Part 1
Find out the initial population
Remember that
The initial value is for t=0
so
substitute in the given function
[tex]\begin{gathered} P(t)=\frac{600}{1+8e^{(-0.45*0)}} \\ \\ P(t)=\frac{600}{1+8} \\ P(t)=67 \end{gathered}[/tex]
the initial population is 67 individuals
Part 2
For t=8 years
substitute in the given function
[tex]\begin{gathered} P(t)=\frac{600}{1+8e^{(-0.45*8)}} \\ P(t)=492 \end{gathered}[/tex]
The answer part 2 is 492 individuals