Respuesta :

In this case, we will use the sum formula for the cosine to write an equivalent expression. Given angles a and b we have that

[tex]\cos (a+b)=\cos (a)\cos (b)\text{ - sin(a)sin(b)}[/tex]

In our case , we have that a=pi, b=x. So

[tex]\cos (\pi+x)=\cos (\pi)\cos (x)\text{ -sin(pi)sin(x)}[/tex]

Recall that

[tex]\cos (\pi)=\text{ -1}[/tex]

and

[tex]\sin (\pi)=0[/tex]

so we have that

[tex]\cos (\pi+x)=\text{ -1}\cdot\cos (x)\text{ - 0}\cdot\sin (x)=\text{ -cos(x)}[/tex]