How do I simplify number 14? Prove Identities or Simplify using sum and difference formula.

In this case, we will use the sum formula for the cosine to write an equivalent expression. Given angles a and b we have that
[tex]\cos (a+b)=\cos (a)\cos (b)\text{ - sin(a)sin(b)}[/tex]In our case , we have that a=pi, b=x. So
[tex]\cos (\pi+x)=\cos (\pi)\cos (x)\text{ -sin(pi)sin(x)}[/tex]Recall that
[tex]\cos (\pi)=\text{ -1}[/tex]and
[tex]\sin (\pi)=0[/tex]so we have that
[tex]\cos (\pi+x)=\text{ -1}\cdot\cos (x)\text{ - 0}\cdot\sin (x)=\text{ -cos(x)}[/tex]