Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2862279

_______________


Simplify the trigonometric expression.

Call the expression E:

[tex]\mathsf{E=\dfrac{sin\,\theta}{\sqrt{1-sin^2\,\theta}}\qquad\qquad(but~~1-sin^2\,\theta=cos^2\,\theta)}\\\\\\ \mathsf{E=\dfrac{sin\,\theta}{\sqrt{cos^2\,\theta}}}\\\\\\ \mathsf{E=\dfrac{sin\,\theta}{\left|cos\,\theta\right|}}}[/tex]


[tex]\mathsf{E}=\left\{\!\begin{array}{rl}\mathsf{\dfrac{sin\,\theta}{cos\,\theta}\,,}&\mathsf{\quad if~~cos\,\theta>0}\\\\\mathsf{\dfrac{sin\,\theta}{-\,cos\,\theta}\,,}&\mathsf{\quad if~~cos\,\theta<0}\end{array}\right.\\\\\\\\\mathsf{E}=\left\{\!\begin{array}{rr}\mathsf{tan\,\theta,\qquad if}&\mathsf{-\dfrac{\pi}{2}+k\cdot 2\pi<\theta<\dfrac{\pi}{2}+k\cdot 2\pi}\\\\\mathsf{-\,tan\,\theta,\qquad if}&\mathsf{\dfrac{\pi}{2}+k\cdot 2\pi<\theta<\dfrac{3\pi}{2}+k\cdot 2\pi}\end{array}\right.\qquad\mathsf{k \in \mathbb{Z}}[/tex]


So basically E is equivalent to [tex]\pm\,\mathsf{tan\,\theta},[/tex] where the sign depends on which quadrant [tex]\theta[/tex] lies. Shortly,

[tex]\mathsf{\dfrac{sin\,\theta}{\sqrt{1-sin^2\,\theta}}}=\left\{\! \begin{array}{rl} \mathsf{tan\,\theta,}&\mathsf{\quad if~\theta~lies~either~in~the~1^{st}~or~the~4^{th}~quadrant}\\\\ \mathsf{-\,tan\,\theta,}&\mathsf{\quad if~\theta~lies~either~in~the~2^{nd}~or~the~3^{rd}~quadrant} \end{array}[/tex]


I hope this helps. =)


Tags:  simplify trigonometric trig expression sine cosine tangent sin cos tan absolute value modulus trigonometry

Answer:

[tex]\tan\theta[/tex]

Step-by-step explanation:

We are given our expression as

[tex]\frac{\sin\theta}{\sqrt{1-\sin^{2}\theta}}[/tex]

Here we have to recall the trignometric identities which says

[tex]\sin^{2}\theta + \cos^{2}\theta=1[/tex]

taking [tex]\sin^{2}\theta[/tex] to the right hand side of =

[tex]\cos^{2}\theta = 1- \sin^{2}\theta[/tex]

Hence we replace [tex]1- \sin^{2}\theta[/tex] with [tex]\cos^{2}\theta[/tex] in our main equation,

[tex]\frac{\sin\theta}{\sqrt{\cos^{2}\theta}}\\\frac{\sin\theta}{\cos\theta}\\=\tan\theta[/tex]

Hence the answer is [tex]\tan\theta[/tex]