let t be the linear transformation which rotates all vectors in r 2 counterclockwise through an angle of π/2. find a matrix of t and then find eigenvalues and eigenvectors.

Respuesta :

Matrix of t = [tex]\left[\begin{array}{ccc}0&-1\\-1&0\\\end{array}\right][/tex] and  eigenvalues are 1 and -1 Eigenvectors [tex](\left[\begin{array}{ccc}x\\y\\\end{array}\right] )=k(\left[\begin{array}{ccc}1\\-1\\\end{array}\right] )[/tex].

As given in the question,

Linear transformation which rotates all vectors r2 counterclockwise α= π/2.

Required matrix = [tex]\left[\begin{array}{ccc}cos\alpha &-sin\alpha \\-sin\alpha &cos\alpha \end{array}\right][/tex]

                          = [tex]\left[\begin{array}{ccc}cos\pi /2 &-sin\pi/2 \\-sin\pi /2 &cos\pi /2\end{array}\right][/tex]

                          = [tex]\left[\begin{array}{ccc}0&-1\\-1&0\\\end{array}\right][/tex]

Eigen values λ

[tex]\left[\begin{array}{ccc}0&-1\\-1&0\\\end{array}\right][/tex] -λ[tex]\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right][/tex] =0

⇒ λ²-1 =0

⇒λ =±1

Eigenvectors

AX=λX

⇒(A-λI) X=0

⇒[tex](\left[\begin{array}{ccc}0&-1\\-1&0\\\end{array}\right]-1\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right])(\left[\begin{array}{ccc}x\\y\\\end{array}\right] )=(\left[\begin{array}{ccc}0\\0\\\end{array}\right] )[/tex]

⇒-x-y=0

⇒x=k and y =-k

Eigenvectors [tex](\left[\begin{array}{ccc}x\\y\\\end{array}\right] )=k(\left[\begin{array}{ccc}1\\-1\\\end{array}\right] )[/tex]

Therefore, matrix of t = [tex]\left[\begin{array}{ccc}0&-1\\-1&0\\\end{array}\right][/tex] and  eigenvalues are 1 and -1 Eigenvectors [tex](\left[\begin{array}{ccc}x\\y\\\end{array}\right] )=k(\left[\begin{array}{ccc}1\\-1\\\end{array}\right] )[/tex].

Learn more about matrix here

brainly.com/question/28180105

#SPJ4